back
Get SIGNAL/NOISE in your inbox daily

Conversational AI adoption is accelerating in marketing, sales, and customer service, with over 40% of organizations already implementing this technology. However, many business leaders are unsure how to begin implementation, particularly when it comes to choosing between open-source and closed-source large language models (LLMs).

Key considerations for building conversational AI: The choice between popular LLMs like GPT-4o (OpenAI) and Llama 3 (Meta) depends on factors such as setup costs, processing costs, and specific business needs.

  • Setup costs include development and operational expenses to get the LLM running, while processing costs cover the actual expense of each conversation once the tool is live.
  • The cost-to-value ratio depends on the intended use of the LLM and the expected usage volume.
  • GPT-4o offers quicker deployment with minimal setup, while Llama 3 requires more initial investment but may provide long-term cost benefits for high-volume users.

Understanding LLM pricing models: LLMs typically use “tokens” as a basic metric for processing input and output, though the definition of tokens can vary between models.

  • GPT-4o, a closed-source model, charges $0.005 per 1,000 input tokens and $0.015 per 1,000 output tokens.
  • Llama 3, an open-source model, can be hosted on private servers or cloud infrastructure, with providers like Amazon Bedrock charging $0.00265 per 1,000 input tokens and $0.00350 per 1,000 output tokens.

Cost comparison for a benchmark conversation: Using a hypothetical conversation of 16 messages totaling 30,390 tokens, the costs were calculated for both LLMs.

  • GPT-4o: Approximately $0.16 per conversation
  • Llama 3 (on AWS Bedrock): Approximately $0.08 per conversation, not including server costs

Additional factors to consider: The decision between LLMs should take into account various aspects beyond just token costs.

  • Time to deployment: GPT-4o offers faster implementation, while Llama 3 may require weeks of setup.
  • Usage volume: High-volume users may benefit more from Llama 3’s lower per-conversation costs in the long run.
  • Control and customization: Open-source models like Llama 3 offer more control over the product and data.
  • Operational requirements: Llama 3 demands more time and resources for setup, maintenance, and infrastructure management.

Weighing the options: The choice between building in-house or using off-the-shelf solutions depends on the company’s specific needs and resources.

  • Companies planning to use conversational AI as a core service may find it worthwhile to invest in building their own solution.
  • For businesses where conversational AI is not a fundamental element of their brand, off-the-shelf products may offer a more cost-effective and efficient solution.

Looking ahead: As conversational AI continues to evolve, businesses must carefully evaluate their options based on their unique context and customer needs.

  • The rapid adoption of generative AI in various sectors indicates its growing importance in bridging communication gaps between businesses and customers.
  • Continuous assessment of LLM options and their associated costs will be crucial as the technology advances and market demands change.

Recent Stories

Oct 17, 2025

DOE fusion roadmap targets 2030s commercial deployment as AI drives $9B investment

The Department of Energy has released a new roadmap targeting commercial-scale fusion power deployment by the mid-2030s, though the plan lacks specific funding commitments and relies on scientific breakthroughs that have eluded researchers for decades. The strategy emphasizes public-private partnerships and positions AI as both a research tool and motivation for developing fusion energy to meet data centers' growing electricity demands. The big picture: The DOE's roadmap aims to "deliver the public infrastructure that supports the fusion private sector scale up in the 2030s," but acknowledges it cannot commit to specific funding levels and remains subject to Congressional appropriations. Why...

Oct 17, 2025

Tying it all together: Credo’s purple cables power the $4B AI data center boom

Credo, a Silicon Valley semiconductor company specializing in data center cables and chips, has seen its stock price more than double this year to $143.61, following a 245% surge in 2024. The company's signature purple cables, which cost between $300-$500 each, have become essential infrastructure for AI data centers, positioning Credo to capitalize on the trillion-dollar AI infrastructure expansion as hyperscalers like Amazon, Microsoft, and Elon Musk's xAI rapidly build out massive computing facilities. What you should know: Credo's active electrical cables (AECs) are becoming indispensable for connecting the massive GPU clusters required for AI training and inference. The company...

Oct 17, 2025

Vatican launches Latin American AI network for human development

The Vatican hosted a two-day conference bringing together 50 global experts to explore how artificial intelligence can advance peace, social justice, and human development. The event launched the Latin American AI Network for Integral Human Development and established principles for ethical AI governance that prioritize human dignity over technological advancement. What you should know: The Pontifical Academy of Social Sciences, the Vatican's research body for social issues, organized the "Digital Rerum Novarum" conference on October 16-17, combining academic research with practical AI applications. Participants included leading experts from MIT, Microsoft, Columbia University, the UN, and major European institutions. The conference...